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Finite-sum Convex Problem

The optimization problem of interest:

min
x∈Ω

F (x) ≜
1
n

n

∑

i=1
fi(x) +Ψ(x), (1)

where fi(x) is convex and Ψ(x) is proper, lower-semicontinuous and convex.
Let Ω∗, F∗ denote the set of optimal solutions and the optimal value, respectively.

• We make the following assumptions:
a. There exist x0 ∈ Ω and ε0 ≥ 0 s.t. F (x0) − F∗ ≤ ε0;
b. Ω∗ is a non-empty convex compact set;
c. fi is differential whose gradient is Li-Lipschitz continuous, i.e. for all x, y ∈ Ω,

fi(x) − fi(y) ≤ ⟨∇fi(y), x − y⟩ +
Li
2
∥x − y∥2

2;
d. L ≜ maxiLi is given or can be estimated for the problem.

• f(x) ≜ 1
n∑

n
i=1 fi(x) is also continuously differential convex function whose gradient is

Lf-Lipschitz continuous, where Lf = 1
n∑

n
i=1Li.

Related Work

• Under the strong convexity of the objective function, stochastic variance reduced
gradient (SVRG) method [1] and its proximal variant [2] achieve linear convergence.

• SVRG++ [3] can cope with non-strongly convex problems, however, it only has
sublinear convergence (e.g., requiring a O(1/ε) iteration complexity to achieve an
ε-optimal solution).

• Recent studies on optimization showed that leveraging the quadratic error bound
(QEB) condition can open a new door to the linear convergence without strong
convexity [4-9]

• The issue is that these methods (for example, SVRG) require to know the parameter c
(analogous to the strong convexity parameter) in the QEB for setting the number of
iterations of inner loops, which is usually unknown and difficult to estimate.

Hölderian error bound

Definition 1. A function F (x) is said to satisfy a Hölderian error bound (HEB) condi-
tion on a compact set Ω if there exist θ ∈ (0, 1/2] and c > 0 such that for any x ∈ Ω

∥x − x∗∥2 ≤ c(F (x) − F∗)
θ, (2)

where x∗ denotes the closest optimal solution to x.

• A special case of HEB is quadratic error bound (QEB):
∥x − x∗∥2 ≤ c(F (x) − F (x∗))

1/2,∀x ∈ Ω, (3)

One example satisfying QEB is strongly convex function.
• The above inequality in HEB can always hold for θ = 0 on a compact set Ω.
• If a HEB condition with θ ∈ (1/2, 1] holds, it can be reduced to the QEB condition
provided that F (x) − F∗ is bounded over Ω.

SVRG under the HEB condition

Algorithm 1 SVRG under HEB (SVRGHEB(x0, T1, R, θ))

1: Input: x0 ∈ Ω, number of inner initial iterations T1, number of outer loops R.
2: x̄(0)

= x0
3: for r = 1, 2, . . . ,R do
4: ḡr = ∇f(x̄(r−1)

), x(r)
0 = x̄(r−1)

5: for t = 1, 2, . . . , Tr do
6: Choose it ∈ {1, . . . , n} uniformly at random.
7: g

(r)
t = ∇fit(x

(r)
t−1) − ∇fit(x̄

(r−1)
) + ḡr.

8: x
(r)
t = arg minx∈Ω⟨g(r)t , x − x

(r)
t−1⟩ +

1
2η∥x − x

(r)
t−1∥

2
2 +Ψ(x).

9: end for
10: x̄(r)

=
1
Tr
∑
Tr
t=1x

(r)
t , Tr+1 = 21−2θTr

11: end for
12: Output: x̄(R)

Theorem 1. Assume problem (1) satisfies the HEB condition with θ ∈ (0, 1/2].
Let η = 1/(36L), and T1 ≥ 81Lc2

(1/ε0)
1−2θ

(T1 depends on c). By running
SVRGHEB with R = ⌈log2

ε0
ε ⌉, we have E[F (x̄(R)

) −F∗] ≤ ε. The iteration complexity
of SVRGHEB in expectation is O(n log(ε0/ε) +Lc2 max{ 1

ε1−2θ, log(ε0/ε)}).

• when θ = 1/2 (i.e, the QEB condition holds), Algorithm 1 reduces to the standard SVRG
method under strong convexity, and the iteration complexity becomes O((n +Lc2

) log(ε0/ε)),
which is the same as that of the standard SVRG with Lc2 mimicking the condition number of
the problem.

• when θ = 0 (i.e., with only the smoothness assumption), Algorithm 1 reduces to SVRG++ with
one difference, where in SVRGHEB the initial point and the reference point for each outer loop
are the same but are different in SVRG++, and the iteration complexity of SVRGHEB becomes
O(n log(ε0/ε) +

Lc2

ε ) that is similar to that of SVRG++.
• for intermediate θ ∈ (0, 1/2), a faster convergence than SVRG++ can be obtained.

Adaptive SVRG for θ ∈ (0, 1/2)

Algorithm 2 SVRG under HEB with Restarting: SVRGHEB-RS

1: Input: x(0)
∈ Ω, a small value c0 > 0, and θ ∈ (0, 1/2).

2: Initialization: T (1)
1 = 81Lc2

0 (1/ε0)
1−2θ

3: for s = 1, 2, . . . , S do
4: x(s)=SVRGHEB (x(s−1), T (s)

1 , R, θ)
5: T

(s+1)
1 = 21−2θT

(s)
1

6: end for

Main Result 1

Theorem 2. Assume problem (1) satisfies the HEB with θ ∈ (0, 1/2). Let c0 ≤ c,
ε ≤

ε0
2 , R = ⌈log2

ε0
ε ⌉, and T

(1)
1 = 81Lc2

0 (1/ε0)
1−2θ. Let run SVRGHEB-RS with S =

⌈
1

1
2−θ

log2 (
c
c0
)⌉ + 1, then E[F (x(S)

) −F∗] ≤ ε. The iteration complexity of SVRGHEB-RS

is

O (n log(ε0/ε) log(c/c0) +
Lc2

ε1−2θ) .

Adaptive SVRG for θ = 1/2

• The challenge is to decide when we should increase the value of c: In light of the
value of T1 in Theorem 2 for θ = 1/2, i.e., T1 = ⌈81Lc2

⌉, one might consider to start
with a small value for c and then increase its value by a constant factor at certain
points in order to increase the value of T1.

• The goal is to develop an appropriate “certificate” that can be easily verified and can
act as signal to check whether the value of c is already large enough for a sufficient
decrease in the objective value.

• The motivation of the developed certificate is the property of proximal gradient
update under the QEB, i.e.,

F (x̄) − F∗ ≤ (L +Lf)
2c2

∥x̄ − x̃∥2
2,

where x̄ = arg minx∈Ω⟨∇f(x̃), x − x̃⟩ + L
2∥x − x̃∥

2
2 +Ψ(x).

• The term ∥x̄ − x̃∥2 can be used as a gauge for monitoring the decrease in the objective
value by performing the proximal gradient update. Although the full gradient is
computationally expensive, SVRG allows to compute it at a small number of
reference points.

• Searching the value of c: The full gradients are leveraged to develop the certificate
for searching the value of c. The detailed steps are presented in Step 8 to Step 10 of
Algorithm 3. If cs is larger than c, the condition in Step 8 is true with small
probability, which is stated in the following lemma.

Lemma 1. Assume problem (1) satisfies the QEB condition. Let η = 1
36L, Ts = ⌈81Lc2

s⌉,
Rs = ⌈log2 (

2c2
s(L+Lf)

2

ϑ2ρL )⌉ . Then for any ϑ ∈ (0, 1), we have

Pr(∥x̄(s+1)
− x̃(s+1)

∥2 ≥ ϑ∥x̄
(s)
− x̃(s)

∥2∣cs ≥ c) ≤ ρ.

Algorithm 3 SVRG under QEB with Restarting and Search: SVRGQEB-RS

1: Input: x̃(0)
∈ Ω, an initial value c0 > 0, ε > 0, ρ = log−1

(1/ε) and ϑ ∈ (0, 1).
2: x̄(0)

= arg minx∈Ω⟨∇f(x̃0
), x − x̃0

⟩ +
L
2∥x − x̃

0
∥

2
2 +Ψ(x), s = 0

3: while ∥x̄(s)
− x̃(s)

∥
2
2 > ε do

4: Set Ts = ⌈81Lc2
s⌉ and Ts = log 1

9δ
(
κs
ϑτ)

5: x̃(s+1)=SVRGHEB(x̄(s), Ts, Rs, 0.5)
6: x̄(s+1)

= arg minx∈Ω⟨∇f(x̃(s+1)
), x − x̃(s+1)

⟩ +
L
2∥x − x̃

(s+1)
∥

2
2 +Ψ(x)

7: cs+1 = cs
8: if ∥x̄(s+1)

− x̃(s+1)
∥2 ≥ ϑ∥x̄(s)

− x̃(s)
∥2 then

9: cs+1 =
√

2cs, x̄(s+1)
= x̄(s), x̃(s+1)

= x̃(s)

10: end if
11: s = s + 1
12: end while
13: Output: x̄(s)

Main Result 2

Theorem 3. Assume problem (1) satisfies the QEB condition. Let ρ = log−1
(1/ε),

η = 1
36L, Ts = ⌈81Lc2

s⌉, and Rs = ⌈log2 (
2c2
s(L+Lf)

2

ϑ2ρL )⌉. The expected iteration complexity
of SVRGQEB-RS is

O ((Lc2
+ n) log2 (

c2
(L +Lf)2

ϑ2L
log (

1
ε
))(log1/ϑ2 (

∥x̄(0)
− x̃(0)

∥
2
2

ε
) + log2 (

c

c0
))) .

Applications and Experiments

1. Piecewise convex quadratic (PCQ) problems
• Examples of loss function: square loss `(z, b) = (z − b)2; squared hinge loss

`(z, b) = max(0, 1 − bz)2; Huber loss `γ(z, b) = {

1
2(z − b)

2 if ∣z − b∣ ≤ γ,
γ(∣z − b∣ − 1

2γ) otherwise.
• Examples of regularization: `1 norm, `∞ norm or `1,∞ norm regularization.
• It satisfys the QEB condition, i.e., θ = 1/2.

2. A family of structured smooth composite functions: F (x) = h(Ax) +Ψ(x)

• Ψ(x) is a polyhedral function or an indicator function of a polyhedral set.
•h(⋅) is a smooth and strongly convex function on any compact set.
• Examples of loss function: square loss `(z, b) = (z − b)2; logistic loss
`(z, b) = log(1 + exp(−zb)).

• It satisfies the QEB condition, i.e., θ = 1/2.
3. `1 constrained `p norm regression: F (x) = 1/n∑ni=1(x

⊺ai − bi)p, where p ∈ 2N+.
• It satisfies the HEB condition with intermediate values of θ ∈ (0, 1/2), i.e., θ = 1/p.
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(a) Different estimations of c (i.e., T1)
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(b) Linear classification (θ = 1/2)
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(c) Linear regression (θ = 1/2)
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(d) Linear regression (θ = 1/4)
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