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Abstract

In this paper, we address learning problems for high dimen-
sional data. Previously, oblivious random projection based
approaches that project high dimensional features onto a ran-
dom subspace have been used in practice for tackling high-
dimensionality challenge in machine learning. Recently, var-
ious non-oblivious randomized reduction methods have been
developed and deployed for solving many numerical prob-
lems such as matrix product approximation, low-rank ma-
trix approximation, etc. However, they are less explored for
the machine learning tasks, e.g., classification. More seri-
ously, the theoretical analysis of excess risk bounds for risk
minimization, an important measure of generalization perfor-
mance, has not been established for non-oblivious random-
ized reduction methods. It therefore remains an open prob-
lem what is the benefit of using them over previous oblivious
random projection based approaches. To tackle these chal-
lenges, we propose an algorithmic framework for employ-
ing non-oblivious randomized reduction method for general
empirical risk minimizing in machine learning tasks, where
the original high-dimensional features are projected onto a
random subspace that is derived from the data with a small
matrix approximation error. We then derive the first excess
risk bound for the proposed non-oblivious randomized reduc-
tion approach without requiring strong assumptions on the
training data. The established excess risk bound exhibits that
the proposed approach provides much better generalization
performance and it also sheds more insights about different
randomized reduction approaches. Finally, we conduct exten-
sive experiments on both synthetic and real-world benchmark
datasets, whose dimension scales to O(107), to demonstrate
the efficacy of our proposed approach.

Introduction

Recently, the scale and dimensionality of data associ-
ated with machine learning and data mining applica-
tions have seen unprecedented growth, spurring the BIG
DATA research and development. Learning from large-scale
ultrahigh-dimensional data remains a computationally chal-
lenging problem. The big size of data not only increases
the memory footprint but also increases the computational
costs pertaining to optimization. A popular approach for
addressing the high-dimensionality challenge is to perform
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dimensionality reduction. Nowadays, randomized reduction
methods are emerging to be attractive for dimensionality re-
duction. Compared with traditional dimensionality reduc-
tion methods (e.g., PCA and LDA), randomized reduction
methods (i) can lead to simpler algorithms that are easier to
analyze (Mahoney 2011); (ii) can often be organized to ex-
ploit modern computational architectures better than classi-
cal dimensional reduction methods (Halko, Martinsson, and
Tropp 2011); (iii) can be more efficient without loss in effi-
cacy (Paul et al. 2013).

Generally, randomized reduction methods can be cast into
two types: the first type of methods reduces a set of high-
dimensional vectors into a low dimensional space indepen-
dent of each other. These methods usually sample a random
matrix independent of the data and then use it to reduce
the dimensionality of the data. The second type of methods
projects a set of vectors (in the form of a matrix) onto a sub-
space such that the original matrix can be well reconstructed
from the projected matrix and the subspace. Therefore, the
subspace to which the data is projected depends on the orig-
inal data. These methods have been deployed for solving
many numerical problems related to matrices, e.g., matrix
product approximation, low-rank matrix approximation, ap-
proximate singular value decomposition (Boutsidis and Git-
tens 2013; Halko, Martinsson, and Tropp 2011). To differen-
tiate these two types of randomized reduction methods, we
refer to the first type as oblivious randomized reduction, and
refer to the second type as non-oblivious randomized reduc-
tion. We note that in literature oblivious and non-oblivious
are used interchangeably with data-independent and data-
dependent. Here, we use the terminology commonly appear-
ing in matrix analysis and numerical linear algebra due to
that the general excess risk bound depends on the matrix ap-
proximation error.

However, we have not seen any comprehensive study on
the statistical property (in particular the excess risk bound)
of these randomized reduction methods applied to risk min-
imization in machine learning. The excess risk bound mea-
sures the generalization performance of a learned model
compared to the optimal model from a class that has the
best generalization performance. The excess risk bounds
facilitate a better understanding of different learning algo-
rithms and have the potential to guide us to design bet-
ter algorithms (Kukliansky and Shamir 2015). It is worth
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noting that several studies have been devoted to under-
standing the theoretical properties of oblivious random-
ized reduction methods applied to classification and regres-
sion problems. For example, (Blum 2005; Shi et al. 2012;
Paul et al. 2013) analyzed the preservation of the margin
of SVM based classification methods with randomized di-
mension reduction. (Zhang et al. 2014; Yang et al. 2015;
Pilanci and Wainwright 2015) studied the problem from the
perspective of optimization. Nonetheless, these results are
limited in the sense that (i) they focus on only oblivious ran-
domized reduction where the data is projected onto a random
subspace independent of the data; (ii) they depend heavily
on strong assumptions of the training data or the problem,
e.g., low-rank of the data matrix, linear separability of train-
ing examples, or the sparsity of optimal solution, and (iii)
some of these results do not directly carry over to the excess
risk bounds.

To tackle the above challenges, we propose an algorithmic
framework for employing non-oblivious randomized reduc-
tion (NOR) method to project the original high-dimensional
features onto a random subspace that is derived from the
original data. We study and establish the excess risk bound
of the presented randomized algorithms for risk minimiza-
tion. Different from previous results for oblivious random-
ized reduction methods, our theoretical analysis does not re-
quire assumptions of the training data or the problem, such
as low-rank of the data matrix, linear separability of train-
ing examples, and the sparsity of optimal solution. When the
data matrix is of low-rank or has a fast spectral decay, the ex-
cess risk bound of NOR is much better than that of oblivious
randomized reduction based methods. Empirical studies on
synthetic and real data sets corroborate the theoretical results
and demonstrate the effectiveness of the proposed methods.

Related Work
In literature, tremendous studies are devoted to non-
oblivious randomized reduction in matrix applications. The
focus of these studies is to establish matrix approximation
error or the recovery error of the solution (e.g., in least-
squares regression). Few studies have examined their prop-
erties for risk minimization in machine learning. For obliv-
ious randomized reduction methods, there exist some theo-
retical work trying to understand their impact on prediction
performance (Blum 2005; Shi et al. 2012; Paul et al. 2013).
This work differentiates from these studies in that we focus
on the statistical property (the generalization property) of
non-oblivious randomized reduction for expected risk mini-
mization.

We employ tools in statistical learning theory to study
the excess risk bounds of randomized reduction and re-
sults from randomized matrix theory to understand the or-
der of the excess risk bound. A popular method for ex-
pected risk minimization is regularized empirical risk min-
imization (Vapnik 1998). The excess risk bounds of regu-
larized empirical risk minimization have been well under-
stood. In general, given a sample of size n it can achieve
a risk bound of O(1/

√
n). Under some special conditions

(e.g., low noise condition) this bound can be further im-
proved (Bousquet, Boucheron, and Lugosi 2003). How-

ever, it is still not entirely clear what is the order of ex-
cess risk for learning from randomized dimensionality re-
duced data. The recovery result from (Zhang et al. 2014;
Yang et al. 2015) could end up with an order of O(1/

√
m)

excess risk for oblivious randomized reduction, where m is
the reduced dimensionality. However, it relies on strong as-
sumptions of the data. (Durrant and Kaban 2013) proved the
generalization error of the linear classifier trained on ran-
domly projected data by oblivious randomized reduction,
which is upper bounded by the training error of the classifier
learned in the original feature space by empirical risk min-
imization plus the VC-complexity in the projection space
(proportional to O(1/

√
m) and plus terms depending on

the average flipping probabilities on the training points de-
fined as (1/n)

∑n
i=1 Pr(sign(w

T
nA

ᵀAxi) �= sign(wᵀ
nxi)),

where wn is a model learned from the original data by em-
pirical risk minimization. However, the order of the average
flipping probabilities is generally unknown.

Random sampling (in particular uniform sampling) has
been used in the Nyström method for approximating a
big kernel matrix. There are some related work focusing
on the statistical properties of the Nyström based kernel
method (Yang et al. 2012; Bach 2013; Jin et al. 2013;
Alaoui and Mahoney 2015). We note that the presented
empirical risk minimization with non-oblivious randomized
reduction using random sampling is similar to using the
Nyström approximation on the linear kernel. However, in
the present work besides random sampling, we also study
other efficient randomized reduction methods using differ-
ent random matrices. By leveraging recent results of these
randomized reduction methods we are able to obtain better
performance than using random sampling.

Preliminaries

Let (x, y) denote a feature vector and a label that follow
a distribution P = P(x, y), where x ∈ X ⊂ R

d and
y ∈ Y . In the sequel, we will focus on Y = {+1,−1} and
Y = R. However, we emphasize that the results are applica-
ble to other problems (e.g., multi-class and multi-label clas-
sification). We denote by �(z, y) a non-negative loss function
that measures the inconsistency between a prediction z and
the label y. Let w ∈ R

d, then by assuming a linear model
z = wᵀx for prediction, the risk minimization problem in
machine learning is to solve following problem:

w∗ = arg min
w∈Rd

EP [�(wᵀx, y)] (1)

where EP [·] denotes the expectation over (x, y) ∼ P .
Let A be an algorithm that learns an approximate solution

wn from a sample of size n, i.e., {(x1, y1), . . . , (xn, yn)}.
The excess risk of wn is defined as the difference between
the expected risk of the solution wn and that of the optimal
solution w∗:

ER(wn,w∗) = EP [�(wᵀ
nx, y)]− EP [�(wᵀ

∗x, y)] (2)

A popular method for learning an approximate solution wn

is based on regularized empirical risk minimization (ERM),
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i.e.,

wn = arg min
w∈Rd

1

n

n∑
i=1

�(wᵀxi, yi) +
λ

2
‖w‖22 (3)

The ERM problem is sometimes solved by solving its dual
problem:

α∗ = arg max
α∈Rn

− 1

n

n∑
i=1

�∗i (αi)− 1

2λn2
αᵀXᵀXα (4)

where α is usually called dual variable, �∗i (α) = maxz αz−
�(z, yi) is the conjugate dual of the loss function, and X =
(x1, . . . ,xn) ∈ R

d×n is the data matrix. With α∗, we have
wn = − 1

λnXα∗.

Oblivious Randomized Reduction

In this section, we present an excess risk bound of oblivi-
ous randomized reduction building on previous theoretical
results to facilitate the comparison with our result of non-
oblivious randomized reduction. The idea of oblivious ran-
domized reduction is to reduce a high-dimensional feature
vector x ∈ R

d to a low dimensional vector by x̂ = Ax ∈
R

m, where A ∈ R
m×d is a random matrix that is indepen-

dent of the data. A traditional approach is to use a Gaus-
sian matrix with each entry independently sampled from a
normal distribution with mean zero and variance 1/m (Das-
gupta and Gupta 2003). Recently, many other types of ran-
dom matrix A are proposed that lead to much more efficient
computation of reduction, including subsampled random-
ized Hadamard transform (SRHT) (Boutsidis and Gittens
2013) and random hashing (RH) (Kane and Nelson 2014).
The key property of A that plays an important role in the
analysis is that it should preserve the Euclidean length of
a high-dimensional vector with a high probability, which is
stated formally in Johnson-Lindenstrauss (JL) lemma below.
Lemma 1 (JL Lemma) For any 0 < ε, δ < 1/2, there ex-
ists a probability distribution on matrices A ∈ R

m×d such
that there exists a small universal constant c > 0 and for
any fixed x ∈ R

d, with a probability at least 1− δ, we have∣∣‖Ax‖22 − ‖x‖22
∣∣ ≤ c

√
log(1/δ)

m
‖x‖22

The key consequence of the JL lemma is that we can reduce
a set of d-dimensional vectors into a low dimensional space
with a reduced dimensionality independent of d such that
the pairwise distance between any two points can be well
preserved.

Given the JL transform A ∈ R
m×d, the problem can be

imposed as,

min
v∈Rm

EP [�(vᵀAx, y)] (5)

Previous studies have focused on using the ERM of the
above problem

min
v∈Rm

1

n

n∑
i=1

�(vᵀx̂i, yi) +
λ

2
‖v‖22 (6)

to learn a model in the reduced feature space or using its dual
solution to recover a model in the original high-dimensional
space:

α̂ = arg max
α∈Rn

− 1

n

n∑
i=1

�∗i (αi)− 1

2λn2
αᵀX̂ᵀX̂α (7)

where X̂ = (x̂1, . . . , x̂n) ∈ R
m×n. For example, (Zhang

et al. 2014) proposed a dual recovery approach to recover a
model in the original high-dimensional space that is close to
the optimal solution wn in (3). The dual recovery approach
consists of two steps (i) the first step obtains an approximate
dual solution α̂ ∈ R

n by solving the dual problem in (7),
and (ii) the second step recovers a high-dimensional model
by ŵn = − 1

λnXα̂. By making a low-rank assumption of the
data matrix, they established a recovery error ‖wn−ŵn‖2 in
the order of O(

√
r/m‖wn‖2), where r represents the rank

of the data matrix. The theory has been generalized to full
rank data matrix but with an additional assumption that the
optimal primal solution wn or the optimal dual solution α∗
is sparse (Zhang et al. 2014; Yang et al. 2015). A similar
order O(

√
r/m‖wn‖2) of recovery error was established,

where r represents the number of non-zero elements in the
optimal solution. The proposition below exhibits the excess
risk bound building on the recovery error.
Proposition 1 Suppose �(z, y) is Lipschitz continuous and
A is a JL transform. Let ŵn denote a recovered model by an
ERM approach such that ‖wn−ŵn‖2 ≤ O(

√
r/m‖wn‖2).

Then

ER(ŵn,w∗) � EP [�(ŵᵀ
nx, y)]− EP [�(wᵀ

∗x, y)]

≤ O(
√
r/m‖wn‖2 + 1/

√
n)

Remark: In the above bound, we omit dependence on upper
bound of the data norm ‖x‖ ≤ R. Although the synthesis of
the proposition and previous recovery error analysis can give
us guarantee on the excess risk bound, it relies on certain
assumptions of the data, which may not hold in practice.

Non-Oblivious Randomized Reduction

The key idea of non-oblivious randomized reduction is to
compute a subspace Û ∈ R

d×m from the data matrix
X ∈ R

d×n such that the projection of the data matrix to
the subspace is close to the data matrix. To compute the sub-
space Û , we first sample a random matrix Ω ∈ R

n×m and
compute Y = XΩ ∈ R

d×m. Then let Û be the left sin-
gular vector matrix of Y . This technique has been used in
low-rank matrix approximation, matrix product approxima-
tion and approximate singular value decomposition (SVD)
of a large matrix (Halko, Martinsson, and Tropp 2011). Var-
ious random matrices Ω can be used as long as the matrix
approximation error defined below can be well bounded.

‖X − Û ÛᵀX‖2 = ‖X − PY X‖2 (8)

where PY = Û Ûᵀ denotes the projection to the subspace Û .
We defer more discussions on different random matrices and
their impact on the excess risk bound to subsection “Matrix
Approximation Error”.
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Algorithm 1 ERM with Non-Oblivious Randomized Re-
duction (NOR)
1: Compute Y = XΩ ∈ R

d×m, where Ω ∈ R
n×m is a random

subspace embedding matrix
2: Compute SVD of Y = ̂U ̂Σ̂V ᵀ, where ̂U ∈ R

d×m

3: Compute the reduced data by ̂X = ̂UᵀX ∈ R
m×n

4: Solve the reduced problem in Eqn. (9)
5: Output v̂n

Next, we focus on the non-oblivious reduction defined by
Û for risk minimization. Let x̂i = Ûᵀxi denote the reduced
feature vector and X̂ = ÛᵀX ∈ R

m×n be the reduced data
matrix. We propose to solve the following ERM problem:

v̂n = arg min
v∈Rm

1

n

n∑
i=1

�(vᵀx̂i, yi) +
λ

2
‖v‖22. (9)

To understand the non-oblivious randomized reduction for
ERM, we first see that the problem above is equivalent to

min
w=̂Uv,v∈Rm

1

n

n∑
i=1

�(wᵀxi, yi) +
λ

2
‖w‖22.

due to that ‖Ûv‖2 = ‖v‖2. Compared to (3), we can see
that the ERM with non-oblivious randomized reduction is
restricting the model w to be Ûv. Since Û can capture the
top column space of X due to the way it is constructed, and
therefore the resulting model ŵn = Û v̂n is close to the top
column space of X . Thus, we expect ŵn to be close to wn.
The procedure is described in details in Algorithm 1. We
note that the SVD in step 2 can be computed efficiently for
sparse data. We defer the details into the supplement.

Excess Risk Bound

Here, we show an excess risk bound of the proposed ERM
with non-oblivious randomized reduction. The logic of the
analysis is to first derive the optimization error of the ap-
proximate model ŵn = Û v̂n and then explore the statis-
tical learning theory to bound the excess risk. In particular,
we will show that the optimization error and consequentially
the excess risk is bounded by the matrix approximation er-
ror in (8). To simplify the presentation, we introduce some
notations:

F (w) =
1

n

n∑
i=1

�(wᵀxi, yi) +
λ

2
‖w‖2 (10)

F̄ (w) = EP [�(wᵀx, y)] +
λ

2
‖w‖22 (11)

Next, we derive the optimization error of ŵn = Û v̂n.
Lemma 2 Suppose the loss function is G-Lipschitz contin-
uous. Let ŵn = Û v̂n. We have

F (ŵn) ≤ F (wn) +
G2

2λn
‖X − PY X‖22

The lemma below bounds the excess risk by the optimization
error.

Lemma 3 (Theorem 1 (Sridharan et al. 2008)) Assume
the loss function is G-Lipschitz continuous and ‖x‖2 ≤ R.
Then, for any δ > 0 and any a > 0, with probability at least
1− δ, we have that for any w∗ ∈ R

d

F̄ (ŵn)− F̄ (w∗) ≤ (1 + a)(F (ŵn)− F (wn))

+
8(1 + 1/a)G2R2(32 + log(1/δ))

λn

Using the lemma above and the the result in Lemma 2, we
have the following theorem about the excess risk bound.

Theorem 1 Assume the loss function is G-Lipschitz contin-
uous and ‖x‖2 ≤ R. Then, for any δ > 0 and any a > 0,
with probability at least 1− δ, we have that for any w∗ such
that ‖w∗‖2 ≤ B

ER(ŵn,w∗) ≤ λB2

2
+

G2(1 + a)

2λn
‖X − PY X‖22

+
8(1 + 1/a)G2R2(32 + log(1/δ))

λn

In particular, if we optimize λ over the R.H.S., we obtain

ER(ŵn,w∗) ≤ GB
√
(1 + a)√
n

‖X − PY X‖2

+
4GRB

√
(1 + 1/a)(32 + log(1/δ))√

n

Remark: Note that the above theorem bounds the excess
risk by the matrix approximation error. Thus, we can lever-
age state-of-the-art results on the matrix approximation to
study the excess risk bound. Importantly, future results about
matrix approximation can be directly plugged into the ex-
cess risk bound. When the data matrix is of low rank r, then
if m ≥ Ω(r log r) the matrix approximation error can be
made zero (see below). As a result, the excess risk bound
of ŵn is O(1/

√
n), the same to that of wn. In contrast, the

excess risk bound in Proposition 1 of oblivious randomized
reduction for ERM is O(

√
r/m) for the dual recovery ap-

proach under the low rank assumption.

Matrix Approximation Error

In this subsection, we will present some recent results on
the matrix approximation error of four commonly used ran-
domized reduction operators Ω ∈ R

n×m, i.e., random sam-
pling (RS), random Gaussian (RG), subsampled randomized
Hadamard transform (SRHT), and random hashing (RH),
and discuss their impact on the excess risk bound. More
details of these four randomized reduction operators can
be found in (Yang et al. 2015). We first introduce some
notations used in matrix approximation analysis. Let r ≤
min(n, d) denote the rank of X and k ∈ N

+ such that 1 ≤
k ≤ r. We write the SVD of X ∈ R

d×n as X = U1Σ1V
ᵀ
1 +

U2Σ2V
ᵀ
2 , where Σ1 ∈ R

k×k, Σ2 ∈ R
(r−k)×(r−k), U1 ∈

R
d×k, U2 ∈ R

d×(r−k), V1 ∈ R
n×k and V2 ∈ R

n×(r−k). We
use σ1, σ2, . . . , σr to denote the singular values of X in the
descending order. Let μk denote the coherence measure of
V1 defined as μk = n

k max1≤i≤n

∑k
j=1[V1]

2
ij .
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Theorem 2 (RS (Gittens 2011)) Let Ω ∈ R
n×m be a

random sampling matrix corresponding to sampling the
columns of X uniformly at random with or without re-
placement. If for any ε ∈ (0, 1) and δ > 0, m satisfies
m ≥ 2μk

(1−ε)2 k log
k
δ , then with a probability at least 1− δ,

‖X − PY X‖2 ≤
√
1 +

n

εm
σk+1

Remark: The matrix approximation error using RS implies
the excess risk bound of RS for risk minimization is dom-
inated by O(σk+1√

m
) provided m ≥ Ω(μkk log k), which is

in the same order in terms of m to that in Proposition 1 of
oblivious randomized reduction. However, random sampling
is not guaranteed to work in oblivious randomized reduction
since it does not satisfy the JL lemma in general (Yang et al.
2015) as required in Proposition 1. Moreover, if the data ma-
trix is low rank such that m ≥ Ω(μrr log r), then the excess
risk bound of NOR with RS is O(1/

√
n), the same order to

that of wn learned from the original high-dimensional fea-
tures.

Theorem 3 (RG (Gittens and Mahoney 2013)) Let Ω ∈
R

n×m be a random Gaussian matrix. If for any ε ∈ (0, 1)
and k > 4, m satisfies m ≥ 2ε−2k log k, then with a proba-
bility at least 1− 2k−1 − 4k−k/ε2 ,

‖X − PY X‖2 ≤O(σk+1) +O

(
ε√

k log k

)√∑
j>k

σ2
j

Remark: We are interested in comparing the error bound of
RG with that of RS. In the worse case, when the tail singular
values are flat, then ‖X − PY X‖2 ≤ O(

√
n
mσk+1), which

is in the same order to that of RS. However, if the tail eigen-
values decay fast such that

√∑
j>k σ

2
j 
 √

nσk+1, then
the matrix approximation error could be much better than
O(

√
n
mσk+1), and consequentially the excess risk bound

could be much better than O(σk+1/
√
m) that is suffered by

RS.

Theorem 4 (SRHT (Boutsidis and Gittens 2013)) Let
Ω =

√
n
mDHP ∈ R

n×m be a SRHT with P ∈ R
n×m

being a random sampling matrix, D ∈ R
n×n is a diagonal

matrix with each entry sampled from {1,−1} with equal
probabilities and H ∈ R

n×n is a normalized Hadamard
transform. If for any 0 < ε < 1/3, 2 ≤ k ≤ r and
δ ∈ (0, 1), m satisfies

6C2ε−1[
√
k +

√
8 log(n/δ)]2 log(k/δ) ≤ m ≤ n,

then with a probability at least 1− 5δ,

‖X − PY X‖2 ≤
(
4 +

√
3 log(n/δ) log(r/δ)

m

)
σk+1

+

√
3 log(r/δ)

m

√∑
j>k

σ2
j

where C is a universal constant.

Remark: The order of the matrix approximation error of
SRHT is similar to that of RG up to a logarithmic factor.

Finally, we summarize the matrix approximation er-
ror of the RH matrix Ω. This has been studied in (Co-
hen, Nelson, and Woodruff 2015), in which RH is also
referred to as sparse subspace embedding. We first de-
scribe the construction of random hashing matrix Ω.
Let hk(i) : [n] → [m/s], k = 1, . . . , s denote
s independent random hashing functions and let Ω =
((H1D1)

ᵀ, (H2D2)
ᵀ, . . . , (HsDs)

ᵀ)ᵀ ∈ R
m×n be a ran-

dom matrix with a block of s random hashing matrices,
where Dk ∈ R

n×n is a diagonal matrix with each en-
try sampled from {−1,+1} with equal probabilities, and
Hk ∈ R

m/s,n with [Hk]j,i = δj,hk(i). The following theo-
rem below summarizes the matrix approximation error using
such a random matrix Ω.

Theorem 5 (RH (Cohen, Nelson, and Woodruff 2015))
For any δ ∈ (0, 1) and ε ∈ (0, 1). If s = 1 and
m = O(k/(εδ)) or s = O(log3(k/δ)/

√
ε) and

m = O(k log6(k/δ)/ε), then with a probability 1− δ

‖X − PY X‖2 ≤ (1 +
√
ε)σk+1 +

√
ε

k

√∑
j>k

σ2
j

Remark: With the second choice of s and m, the order of
the matrix approximation error of RH is similar to that of
SRHT up to a logarithmic factor.

To conclude this section, we can see that the excess risk
bound of the ERM with non-oblivious randomized reduc-
tion is dominated by O(1/

√
m) in the worst case, and could

be much better than RG, SRHT and RH if the tail singular
values decay fast.

Experiments

In this section, we provide empirical evaluations in sup-
port of the proposed algorithms and the theoretical analy-
sis. We implement and compare the following algorithms:
(i) NOR: ERM with non-oblivious randomized reduction;
(ii) previous ERM approaches with oblivious randomized
reduction, including two dual recovery approaches, namely
random projection with dual recovery (RPDR) (Zhang et al.
2014), and dual-sparse regularized randomized (DSRR) ap-
proach (Yang et al. 2015), and the pure random projection
(RP) (Paul et al. 2013). We also implement and compare
three randomized reduction operators for these different ap-
proaches, i.e., RH, RG and RS 1. For RH, we use only one
block of random hashing matrix (i.e., s = 1). A similar re-
sult to Therorem 5 can be established for one-block of ran-
dom hashing but with a constant success probability (Nelson
and Nguyen 2012). The loss function for the binary classifi-
cation problem is the hinge loss and for the multi-class clas-
sification problem is the softmax loss.

Experiments are conducted on four real-world datasets
and three synthetic datasets. The four real-world datasets
are described in Table 1. To generate synthetic data, we first
draw a random standard Gaussian matrix M ∈ R

d×n and
1We do not report the performance of SRHT because it has sim-

ilar performance to RH but it is less efficient than RH.
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Table 1: Statistics of real datasets
Name #Training #Testing #Features #Classes
RCV1.b 677,399 20,242 47,236 2
Splice 1,000,000 4,627,840 12,495,340 2
RCV1.m 15,564 518,571 47,236 53
News20 15,935 3,993 62,061 20
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Figure 1: (a) RPDR and DSRR with different randomized
reduction operators. (b) NOR with different randomized re-
duction operators. (c) Different approaches with RH.

compute its SVD M = USV ᵀ. Then we construct sin-
gular values following three different decay: an exponen-
tial decay (exp-τ ) with σi = e−iτ , (τ = 1) and polyno-
mial decay (poly-τ ) with σi = i−τ , (τ = 0.5, 1). This will
generate 3 synthetic datasets. We compute a base data ma-
trix by Xb =

√
nUΣV ᵀ, where Σ = diag{σ1, . . . , σd}.

Then the binary labels are computed by y = sign(Xᵀ
b w),

where w ∈ R
d is a standard Gaussian random vector. To

increase the difficulty of the problem, we add some Gaus-
sian random features to each data in Xb and form a full data
matrix X ∈ R

(d+t)×n. We use the first 90% examples as
training data and the remaining 10% examples as testing
data. In particular, we generate the synthetic datasets with
d = 1000, n = 105, t = 10. We note that the synthetic data
is not high-dimensional and it is solely for verifying the pro-
posed approach and analysis. We perform data reduction to
reduce features to the dimensionality of m = 100.

We first compare the performance of NOR, RPDR and
DSRR with different randomized reduction operators on the
synthetic datasets in order to verify the excess risk bounds
established in Proposition 1 and subsection “Matrix Approx-
imation Error” (MAE). The results are shown in Figure 1,
where we also include the performance of SVM on the orig-
inal features (denoted by Org). From the results, we can ob-
serve that (i) when the singular values follow an exponential
decay (which yields almost low-rank data matrices), NOR
performs almost the same to SVM on the original data; how-
ever the two recovery approaches RPDR and DSRR perform
much worse than SVM, verifying our theoretical analysis in
Proposition 1 and subsection “MAE”; (ii) The performance
of NOR decreases gradually as the decay of singular values
becomes slower, which is consistent with the theoretical re-
sults in subsection “MAE”; (iii) for NOR, RS is comparable
to RH and RG when the decay of singular-values is fast, but
is slightly worse when the decay of singular values becomes
slower. This is also expected according to the discussions in
subsection “MAE”; (iv) NOR always performs better than
RPDR and DSRR. One reason that RPDR and DSRR do not
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Figure 2: Testing performance of different approaches on
RCV1.b and Splice datasets.
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Figure 3: Testing performance and running time of different
approaches on RCV1.m and News20 datasets.

perform well on these synthetic data sets is that the recov-
ered dual solution is not accurate because that the data has
noise. In contrast, NOR is much more robust to noise.

Secondly, we present some experimental results on two
binary classification real datasets, namely Reuters Text Cat-
egorization both for binary version (RCV1.b) and Splice
Site Recognition (Splice), which are tested in previous stud-
ies (Sonnenburg and Franc 2010). For Splice dataset, we
evaluate different algorithms by computing the same mea-
sure, namely area under precision recall curve (auPRC), as
in (Sonnenburg and Franc 2010). We compare NOR with
RPDR, DSRR and RP. The results are shown in Figure 2. We
can see that when m increases, the testing error/auPRC is
monotonically decreasing/increasing. Comparing with other
three algorithms, NOR has the best performance. In addi-
tion, RS does not work well for oblivious randomized re-
duction approaches (RP, RPDR and DSRR), but performs
similarly to other randomized operators for NOR, which is
consistent with our analysis (i.e., RS is not a JL transform
as required in Proposition 1 for RPDR and DSRR; however,
RS provides guarantee on the matrix approximation error
that renders NOR work).

Finally, we compare NOR with RP on RCV.m and
News20 datasets for multi-class classification. The results
are shown in Figure 3 (upper panel). We can see that NOR
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clearly outperforms RP. In addition, running time results 2

are reported in Figure 3 (lower panel). The running time con-
sists of the reducation time and the optimization time in the
reduced feture space. The results show that (i) NOR is more
efficient than RP; (ii) RH and/or RS are much more efficient
than RG for a certain approach. It is interesting to note that
the total running time of NOR is less than RP. The reason is
that the optimization of NOR is more efficient than RP 3 due
to that the new data of NOR is better suited for classifica-
tion (higher prediction performance), making the optimiza-
tion easier, though NOR has slightly higher data reduction
time than RP.

Conclusions

In this paper, we have established the excess risk bound of
non-oblivious randomized reduction method for risk min-
imization problems. More importantly, the new excess risk
bound does not require stringent assumptions of the data and
the loss functions, which is nontrivial and significant theo-
retical results. The empirical studies on synthetic datasets
and real datasets validate our theoretical analysis and also
demonstrate the effectiveness of the proposed non-oblivious
randomized reduction approach.
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